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Abstract The effects of agitation and aeration rates on

copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

[P(3HB-co-3HV)] production by Azohydromonas lata

MTCC 2311 using cane molasses supplemented with pro-

pionic acid in a bioreactor were investigated. The experi-

ments were conducted in a three-level factorial design by

varying the impeller (150–500 rev min-1) and aeration

(0.5–1.5 vvm) rates. Further, the data were fitted to math-

ematical models [quadratic polynomial equation and arti-

ficial neural network (ANN)] and process variables were

optimized by genetic algorithm-coupled models. ANN and

hybrid ANN-GA were found superior for modeling

and optimization of process variables, respectively. The

maximum copolymer concentration of 7.45 g l-1 with

21.50 mol% of 3HV was predicted at process variables:

agitation speed, 287 rev min-1; and aeration rate, 0.85

vvm, which upon validation gave 7.20 g l-1 of P(3HB-co-

3HV) with 21 mol% of 3HV with the prediction error (%)

of 3.38 and 2.32, respectively. Agitation speed established

a relative high importance of 72.19% than of aeration rate

(27.80%) for copolymer accumulation. The volumetric

gas–liquid mass transfer coefficient (kLa) was strongly

affected by agitation and aeration rates. The highest

P(3HB-co-3HV) productivity of 0.163 g l-1 h-1 was

achieved at 0.17 s-1 of kLa value. During the early phase

of copolymer production process, 3HB monomers were

accumulated, which were shifted to 3HV units (9–21%)

during the cultivation period of 24–42 h. The enhancement

of 7.5 and 34% were reported for P(3HB-co-3HV) pro-

duction and 3HV content, respectively, by hybrid ANN-

GA paradigm, which revealed the significant utilization of

cane molasses for improved copolymer production.

Keywords Cane molasses � P(3HB-co-3HV) � Artificial

neural network � Genetic algorithm � Volumetric oxygen

transfer coefficient (kLa)

Introduction

Many bacterial cells may accumulate a relatively massive

amount of polyhydroxyalkanoates (PHAs), as an intracel-

lular reservoir of carbon and energy sources under the

condition of nutrients and oxygen imbalance. These bio-

materials are biodegradable and biocompatible thermo-

plastic in nature and possess physical properties similar to

that of petroleum-derived polymers [21]. PHAs have a

widespread occurrence in both Gram-positive and Gram-

negative bacteria and a number of investigations have been

carried out on different aspects of PHAs production

including the utilization of various raw materials such as

sugarcane molasses, beet molasses, soy molasses, cheese

whey, crude glycerol, and agricultural residues by selected

microorganisms. A number of microorganisms such

as Alcaligens latus (renamed as Azohydromonas lata),

Cupriavidus nector, Bacillus megaterium, Azotobacter

beijerinckii, and Pseudomonas sp. have been exploited for

PHAs production on various renewable raw materials [2, 4,

7, 14, 17, 21, 25, 34, 37].

The material properties of PHAs can be improved by

fine-tuning of their composition during the biosynthesis to

facilitate their advance applications. The homopolymer

poly(3-hydroxybutyrate) (PHB) is the most common rep-

resentative of PHAs, which has a high degree of crystal-

linity and limited applications. Their processibity under
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melt extrusion technology is pretty small due to a narrow

difference between the decomposition (*270�C) and high

melting (Tm) (*180�C) temperature. These properties can

be enhanced by changing the PHB matrix through the

incorporation of alternate building block monomers such as

3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), or

5-hydroxyvalerate (5HV). The material properties of short-

chain-length (scl) PHAs are comparable to petro-plastic

(polypropylene), even though with low copolymeric com-

position of 3HV, 4HB, or 5HV content. It is noteworthy

that the increase in 3HV units in copolymer from 0 to

25 mol% decreases the Tm from 179 to 137�C; thus it

increases the size of their processing window. Similarly,

the crystalline temperature (Tg) also decreases from 10 to

-6�C, allowing the use of materials at low temperature

without embrittlement [17, 24]. The incorporation of dif-

ferent copolymeric units requires the addition of co-sub-

strate (precursor) in the fermentation medium.

PHAs synthesis generally occurs when bacteria are

grown aerobically and usually under stress, such as in

limited nutrient and oxygen conditions. The effect of dis-

solved oxygen concentration on glucose metabolism for the

PHAs accumulation and respiration of A. beijerinckii was

first investigated by Carter and Dawes [6]. The supply of

oxygen as oxygen transfer rate (OTR) is chosen as the

controlling footstep in many industrial bioprocess systems

and also in its scale-up [9, 22, 26, 30]. It is an important

parameter for the design and operation of aeration and

agitation systems of bioreactors. The aeration supplies the

oxygen demand of microbial population, and its efficiency

depends on oxygen solubilization and diffusion rate into

the medium broth along with the bioreactor capacity.

Oxygen transfer as a function of agitation and aeration to

bioreactor vessel plays an important role, in order to obtain

the appropriate volumetric oxygen transfer coefficient

(KLa) that can correlate with the PHAs productivity in

defined culture medium. The rationale of KLa values

indicate a certain mass-transfer capability that can cope

with the oxygen demand of the culture. It often serves as

the scale-up criteria to compare the efficiency of bioreac-

tors and mixing devices [3, 12].

Azohydromonas lata is a good candidate for PHAs

synthesis since it accumulates biopolymers during both

growth and non-growth phases. It prefers the consump-

tion of sucrose as a carbon source than C. nector, indi-

cating the possible utilization of industrial by-products

beet or cane molasses for the production of PHAs [21,

46]. It is an aerobic, Gram-negative bacterium that

requires oxygen for its growth and various metabolic

activities. The study of agitation and aeration rates on

growth and PHAs production is an important activity

since oxygen is considered a limiting factor for PHAs

accumulation inside many bacterial cells [1]. Agitation is

required to sustain the homogeneous physico-chemical

environment inside the culture broth through adequate

mixing and mass transfer, whereas aeration is beneficial

for growth performance of microorganism by improving

the mass transfer characteristics with respect to substrate,

product/byproduct, and oxygen. The physiological state

of a bacterial cell can strongly influence the biopolymer

accumulation with other by-products, and also affects

the broth rheology, and mass/heat transfer capabilities

[9, 11, 12].

In order to optimize the bioprocess parameters under the

strategic analysis of a cost-effective PHA production pro-

cess, several methodologies have been employed which

range from conventional one-factor-at-a-time (laborious

and time consuming) to a complex statistical based tech-

nique such as response surface methodology (RSM) [15,

20]. Under RSM, a model is usually constructed for the

defined medium components by using quadratic polyno-

mial equation, which depicts the interaction effects among

the components. An artificial intelligence-based neural

network model (ANNs) can also be used as an alternative

to the polynomial regression-based modeling approach that

overcome the non-linearity of bioprocess variable’s inter-

action [13]. The stochastic search procedure based on

genetic algorithm (GA) has been universally applied in an

efficacious manner for the optimization of process vari-

ables with or without the need of statistical design and

empirical models. GA is capable of exploring large input

variables space through the search operators, viz. selection,

crossing over, and mutation [40]. In recent years, hybrid

RSM-GA [16, 39, 45] and hybrid ANN-GA [5, 10, 13, 33,

45] approaches have been successfully used for the opti-

mization of the input variables of various bioprocess

systems.

The potential of A. lata for the accumulation of PHB has

been widely studied [15, 38], but few studies have been

reported on the production of copolymer poly(3-hydro-

xybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] in the

last decade [2, 37]. In our previous study, cane molasses

has been utilized for the production of P(3HB-co-3HV) by

A. lata MTCC 2311 with the supplementation of sodium

propionate [46]. In the present study, the operational

parameters of a bioreactor such as agitation speed and

aeration rate have been optimized with the objectives to

enhance the accumulation of P(3HB-co-3HV) concentra-

tion and incorporation of 3HV units (mol%) in copolymer.

The experiments have been conducted in a three-level

factorial design to identify the optimum combination of

airflow and agitation rates that favor the maximum possible

accumulation of P(3HB-co-3HV) inside the bacterial cells.

Subsequently, the volumetric oxygen transfer coefficients

(kLa) have been estimated and its effects on P(3HB-co-

3HV) productivity and 3HV content (mol%) have been
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examined. Further, mathematical (quadratic polynomial

equation) and artificial intelligence (artificial neural net-

work)-based models have been used to navigate the

experimental data and goodness-of-fit of the models has

been determined by some statistical/mathematical con-

stants. In order to optimize the process variables (agitation

and aeration rates) for maximum P(3HB-co-3HV) pro-

duction, these models have been integrated with a global

search tool, (GA). The predicted optimal solutions of both

the approaches have also been validated by conducting the

separate experiments in a 3-l bioreactor.

Materials and methods

Microorganism and inoculum preparation

The lyophilized culture of Alcaligenes latus MTCC 2311

was procured from the Institute of Microbial Technology,

Chandigarh, India, which is reclassified as A. lata [42]. The

culture was revived in nutrient broth for 24 h followed by

inoculum preparation in the AL2 medium (pH 7.0) by using

50 ml of medium in a 250-ml capacity conical flask kept at

30�C and 180 rev min-1 for 24 h in an orbital shaking

incubator [38].

Bioreactor setup and design of experiments

The batch experiments were conducted in a stirred 3-l

bioreactor (2-l working volume) equipped with ez-control

(Applikon, The Netherlands). The production medium of

copolymer P(3HB-co-3HV) contained the following

ingredients (previously optimized): cane molasses, 3.96%

(total sugar, 20 g l-1); urea, 0.53 g l-1; and sodium pro-

pionate, 15.00 mmol l-1; C/N ratio, 30 [46]. Sodium pro-

pionate was used as a precursor of 3HV units in copolymer

P(3HB-co-3HV). The feeding of propionate was carried

out in three equal pulses of 10 mmol (at 12, 24, and 36 h),

in order to overcome the inhibitory effects of its high doses

on bacterial growth. The first feeding of propionate was

made after the onset of exponential phase, which was used

subsequently by consumption of reducing sugars and urea

in the medium. The initial pH of the solution was main-

tained at 6.8 by using 2 M NaOH/HCl solution. The

experiments were conducted in three-level factorial

designs for varying aeration and agitation rates (Table 1).

The culture medium was inoculated with 5% (v/v,

approximately 1 9 106 cells ml-1) of the prepared seed

medium and cultivated for 72 h at 30�C. The samples

were taken at regular intervals to estimate the total sugar,

(NH4)? ions, propionic acid, biomass, and P(3HB-co-3HV)

concentrations.

Analytical procedures

The biomass concentration was estimated turbidimetrically

at 600 nm using a UV-Vis spectrophotometer (Lambda 35,

PerkinElmer, MA, USA). In addition, the bacterial cell

pellet was collected by centrifugation of 5-ml culture

samples drawn at regular interval at 8,0009g for 10 min.

The centrifuged cell pellet was washed twice with distilled

water and dried at 80�C in a hot air oven to a constant

weight. The quantification of copolymer P(3HB-co-3HV)

was carried out by propanolysis method proposed by Riis

and Mai (1988) with little modification using gas chro-

matograph (Thermo, USA) [31, 46]. The ratio of 3HB and

3HV units of copolymer was calculated from the area

under peak of propyl ester derivatives of these n-alkanoic

acids [41]. The sugar content of the cane molasses solution

was analyzed by a high-performance liquid chromatograph

(HPLC) apparatus (Waters, USA), equipped with sugar-

pak column (6.5 9 250 mm length, Waters, USA) and

refractive index (RI) detector (model 24140, Waters). The

deionized-water at 90�C was used as eluent with a flow rate

of 0.5 ml min-1. The initial and residual concentrations of

propionate were quantified by HPLC system equipped with

IC pak ion-exclusion column (300 9 7.8 mm length,

Waters) and photodiode array (PDA, model 2998, Waters)

detector. The eluent composed of 16 mN sulfuric acid in

10% methanol supplemented with the deionized water

(Millipore system, USA) was prepared daily and was

vacuum filtered through a 0.45-lm nylon filter (Pall Cor-

poration, MI, USA). The PDA detector was operated at

210 nm and with the flow rate of eluent at 0.6 ml min-1.

The standard of organic acids (1–10 ml l-1) and diluted

culture samples were filtered through a 0.45-lm nylon

syringe filter prior to the injection. The cell-free superna-

tant was analyzed for residual (NH4)? ion concentration by

phenol-hypochloride method [35].

Determination of volumetric oxygen mass transfer

coefficient (KLa)

The volumetric oxygen mass transfer coefficient (KLa) in

an aerobic bioprocess depends on the hydrodynamic con-

ditions around the gas bubbles provided by sparger of the

bioreactor system. The experiments were conducted in a

three-level factorial design with varying aeration and agi-

tation rates and the KLa for each experimental run was

estimated by using dynamic method [11].

KLa ¼ ln C0AL � CAL1

� ��
C0AL � CAL2

� �� ��
ðt2 � t1Þ ð1Þ

where, C0AL is the steady-state value of dissolved oxygen

level after re-oxygenation (% air saturation), CAL1
and

CAL2
are two oxygen concentrations (% air saturation)
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measured during re-oxygenation at time t1 and t2,

respectively.

Extraction and determination of material properties

of P(3HB-co-3HV)

The intracellular P(3HB-co-3HV) was extracted from

bacterial cell pellets using chloroform (200 ml) in a

Soxhlet extractor for 12 h. The mixture was filtered and

treated with 4 volumes of methanol in order to precipitate

the copolymer, which was filtered off and dried at room

temperature.

Further, the thermal characteristics of P(3HB-co-3HV)

were measured by thermo gravimetric analyzer (Pyris

Diamond, PerkinElmer Inc, USA) with simultaneous

recording of differential thermal analysis (DTA), and

thermogravimetry (TG) curves. The analysis was carried

out in an inert gas atmosphere of nitrogen of flow rate

100 ml min-1 in the temperature range of 25–400�C at a

heating rate of 10�C per min. The temperatures of melting

and decomposition were determined as the temperature of

corresponding endothermic maxima.

The molecular mass of extracted P(3HB-co-3HV) sam-

ple was determined by gel permeation chromatograph

(GPC) system (Waters Inc., MA, USA) at 40�C. Two

columns in series (high-resolution HSP gel HR 2.5 and

HSP gel HR 3.0, 6.0 9 15 cm length, Waters) were used

with an RI detector. A narrow dispersed polystyrene and

tetrahydrofuran with a flow rate of 0.6 ml min-1 were used

as the MW standard and mobile phase, respectively.

Modeling of experimental data

The relationship between aeration and agitation rates is

expressed mathematically in the form of a quadratic

polynomial equation (Eq. 2) under the RSM methodology.

The numerical data obtained for three-level factorial

designs were subjected to the regression analysis and fitted

to the following quadratic polynomial equation using the

software Design-Expert v 6.0.10 (Stat-Ease Inc., Minne-

apolis, MN, USA).

Y ¼ bo þ
X

biXi þ
X

biiX
2
i þ

X
bijXiXj ð2Þ

where, Y is the predicted response, bo is the constant, bi are

the linear coefficients, bii are the quadratic coefficients, bij

are the second order interaction coefficients, and Xi, Xj

(i = 1, 2; j = 1, 2) are the concentrations of the indepen-

dent medium variables in the coded form. The significance

of model terms (linear, squared, and quadratic) was

examined by performing analysis of variance (ANOVA).

A feed-forward architecture of ANN model, which is

also known as multilayer perception (MLP), has been used

Table 1 Observed and model-derived P(3HB-co-3HV) concentration and kLa along with the 3HV content (mol%) and copolymer productivity

on a set of experiments conducted in full-factorial design

Run Process variables P(3HB-co-3HV)

concentration

(g l-1)

Volumetric oxygen

transfer coefficient

(s-1)

% P(3HB-co-3HV)

(g biomass-1)

3HV content

(mol %)

Copolymer

productivity

(g l-1 h-1)a

Agitation

(rev min-1)

Aeration

(vvm)

Yexp Yrsm Yann kLaexp kLarsm kLaann

1 150 0.5 5.48 5.25 5.45 0.027 0.017 0.028 69.80 20.50 0.137

2 500 0.5 3.84 3.96 3.85 0.207 0.250 0.212 63.15 14.65 0.096

3 150 1.5 5.52 5.26 5.52 0.152 0.140 0.152 49.11 18.35 0.138

4 500 1.5 3.80 3.89 3.80 0.726 0.770 0.728 43.08 12.50 0.095

5 325 0.5 5.80 5.91 5.80 0.054 0.020 0.049 60.73 20.00 0.145

6 325 1.5 5.70 5.87 5.70 0.368 0.340 0.369 51.72 14.00 0.142

7 150 1.0 5.28 5.77 5.31 0.048 0.070 0.048 63.16 20.20 0.132

8 500 1.0 4.66 4.45 4.65 0.584 0.500 0.575 63.40 13.20 0.116

9 325 1.0 6.48 6.41 6.51 0.155 0.170 0.161 56.25 18.25 0.162

10 325 1.0 6.54 6.41 6.51 0.168 0.170 0.161 55.65 18.25 0.163

RMSE 0.220 0.019 0.039 0.005

SEP(%) 4.170 0.353 15.028 1.823

MPE(%) 3.570 0.251 33.237 2.556

Af 1.036 1.002 1.286 1.025

Bf 1.002 1.000 0.866 0.994

a P(3HB-co-3HV) productivity was calculated for 40 h at which maximum copolymer accumulation was observed

990 J Ind Microbiol Biotechnol (2012) 39:987–1001

123



with the back propagation (BP) algorithm to build the

predictive model with scaled values of aeration and agi-

tation rates as input and the P(3HB-co-3HV) concentration

as output of network (Fig. 1). All the inputs and output are

normalized within a uniform range of (0.1–0.9) in order to

ensure the uniform attention during the training process.

The new scaled variables (X*) are calculated by Eq. (3) for

different inputs (X). After the training process, the opti-

mized value of variable (X) is rescaled by Eq. (4) using X*

values.

X� ¼ 0:8
X � Xmin

Xmax � Xmin

þ 0:1 ð3Þ

X ¼ Xmax � Xminð Þ X� � 0:1ð Þ
0:8

þ Xmin ð4Þ

where, X is the input variable in a group of variables to be

scaled. Likewise Xmin and Xmax are the minimum and

maximum values of variables, respectively, and X� is the

corresponding scaled variable.

The first step in the training of a neural network model is

to design the topology of the network. The number of

neurons in input and output layers of neural model is fixed

to the total number of selected input parameters and output

response of the bioprocess, respectively [39]. Further, the

determination of the number of neurons in the hidden layer

of the network is the critical step, and is determined by

varying the number of neurons from 1 to 6 in the hidden

layer. During the training process, the mean square error

(MSE) between the experimental and predicted values is

calculated, and propagated backward through the network

using the well-known resilient back propagation algorithm

(trainrp). The back propagation algorithm adjusts the

weights in each successive layer to reduce the MSE. This

procedure is repeated until the MSE between experimental

and corresponding predicted values satisfy the pre-speci-

fied error criteria.

In order to evaluate the fitting and prediction accuracy

of constructed models, root mean square error (RMSE),

standard error of prediction (SEP), and model predictive

error (MPE) are employed along with the bias (Bf), and

accuracy (Af) factors [18].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðYi;e � Yi;pÞ2

q
=n ð5Þ

SEPð%Þ ¼ ðRMSE=YeÞ � 100 ð6Þ

Bf ¼ 10

Pn

i¼1

logðYi;p=Yi;eÞ=n

� �

ð7Þ

Af ¼ 10

Pn

i¼1

j logðYi;p=Yi;eÞj=n

� �

ð8Þ

MPEð%Þ ¼ 100

n

Xn

i¼1

ðYi;e � Yi;pÞ=Yi;p

�� �� ð9Þ

where, Yi,e is the experimental value of ith experiment, Yi,p

is the corresponding predicted value by model of ith

experiment, Ye is the mean value of experimental data of

PHA concentration or 3HV content (mol%), and n is the

number of experiments.

Optimization of process variables for P3(HB-co-3HV)

production

A stochastic-based GA is used to search the optimum input

space (X) representing process variables, by using the RSM

and ANN models as a fitness function. The details of

optimization steps have been described in our previous

work [44]. In the present study, GA-based optimization

processes are performed using second-order quadratic

polynomial and feed-forward ANN (network of weights

and bias in each layer) models as the fitness functions to

give the global optimal solutions [28]. The data simulations

Fig. 1 Architecture of artificial

neural network model along

with the transfer functions
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were performed using GA and ANN toolboxes of MAT-

LAB 7.8 (MathWorks, Natick, MA, USA).

Experimental validation of optimized solutions

The optimized solutions given by both hybrid RSM-GA

and ANN-GA approaches were externally validated by

conducting the separate experiments in a 3-l bioreactor, in

duplicate.

Results and discussion

Effect of agitation speed and aeration rate

of P(3HB-co-3HV) production

In order to study the effect of agitation and aeration rates

on P(3HB-co-3HV) production by A. lata MTCC 2311, the

experiments were conducted in a full-factorial design

(2n = 8 ? 2 (center point) = 10 experiments) by varying

each variables at three (n) levels (Table 1). The selected

agitation (rev min-1) and aeration (vvm) rates were varied

from 150 to 500 and 0.5 to 1.5, respectively. In a bioreactor

system, the gradients between medium broth and the

interior of a microbial cells is sustained by better mixing

(agitation) and aeration rates. Likewise, the better diffusion

of oxygen in the broth assists the supply of sugars and other

nutrients to the microbial cells and facilitate the removal of

gases and by-products of catabolic reactions from the

microenvironment of microbial cells [22].

Table 1 provides the experimental and predicted values

of P(3HB-co-3HV) and kLa values at various agitation and

aeration rates. We observed that a decrease in P(3HB-co-

3HV) content is also observed when the agitation speed

increases over 325 rev min-1. Though, the high values of

these process variables encourage the consumption of

sugars present in molasses solution for the biomass growth,

it is noticed that the consumption of propionate (a pre-

cursor of 3HV unit) is slow at initial stage of fermentation

(12 h) and increases significantly after the depletion of

NH4
? ions in the solution. It is noteworthy that during

PHAs metabolism, propionate is firstly converted into

propionyl-CoA and further, a portion of propionyl-CoA is

condensed with acetyl-CoA into five carbon monomers of

PHAs by the action of b-ketothiolase. The yield of 3HV

content is generally less than 50% due to the decarboxyl-

ation of some of propionate before the monomer synthesis

[17]. It is also observed that the growth of A. lata is

comparatively slow on molasses as compared to growth on

simple sugars such as glucose, fructose, and sucrose (lag

phase 12 h). After the onset of the exponential phase, the

biopolymer accumulation is initiated in terms of 3HB

monomers by sugar consumption during this phase.

Consequently, the consumption of propionic acid is initi-

ated after 20 h of cultivation period when the growth

becomes slow (with depletion of nitrogen source). Further,

the growth is observed but at a slow rate with simultaneous

consumption of residual sugars and propionic acid for the

incorporation of 3HV units in copolymer. Thus, it is noted

that the incorporation of 3HB and 3HV unit in copolymer

take place both during growth and non/slow growth phase

of A. lata MTCC 2311.

These findings show that the high agitation speed and

aeration rate increase the dissolved oxygen concentration

in the fermentation broth, and are conducive to microbial

growth whereas the moderate agitation and aeration rates

lead to the accumulation of copolymer in the fermentation

broth containing cane molasses and propionic acid as a

source of 3HB and 3HV units of copolymer, respectively.

It is also reported that the high copolymer production is

obtained under the combined conditions of low shear stress

and optimal dissolved oxygen concentration [1].

Effect of agitation and aeration rates on gas–liquid

mass transfer (kLa)

The kLa values are increased with the increase in agitation and

aeration rates (Table 1). During the growth phase, with

varying agitation speed (150–500 rev min-1) and aeration rate

(0.5–1.5 vvm) the kLa values are established in the range of

0.048–0.584 s-1 and 0.054–0.368 s-1, respectively. The

higher values of kLa are observed with the increase in agitation

rate than the increase in aeration rate. A similar trend for kLa

values (9.72–19.10 h-1) has been observed with agitation

range of 200–800 rev min-1 for exopolysaccharide produc-

tion from Enterobacter cloacae WD7 [3].

Further, the second-order polynomial equation (Eq. 2)

has been used for the stepwise regression analysis to esti-

mate the effect of agitation and aeration rates on kLa. The

main, interaction and quadratic effects of variables are

considered and are represented as:

YkLa ¼ 0:24569þ 0:002316 X1 � 0:11659 X2

þ 0:0000037145 X2
1 þ 0:035634 X2

2

þ 0:0011257 X1X2 ð10Þ

where, X1 and X2 are the process variables, agitation speed

(rev min-1) and aeration rate (vvm), respectively.

The correlation coefficient (R2) value of 97.30 indicates that

the above model is well fitted to the experimental data. In

addition, the adj. R2 value of 95.36 is also close to R2 value and

suggests the good agreement of model prediction with exper-

imental data. A contour is also plotted between model-derived

kLa values and agitation and aeration rates, which represent the

positive association between these process variables for

kLa values (Fig. 2). It is noteworthy that in addition to agitation

and aeration rates, many other factors such as mixing, broth
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viscosity, product formation, and biomass may also influence

the kLa values during the bioprocess. The regression analysis

between dependent (kLa value) and independent variables

(agitation and aeration rates) reveals that the kLa value is

strongly affected by linear effects of agitation speed, aeration

rate, and quadratic effect of agitation rate (p value\0.05). The

interaction between aeration and agitation (p value\0.05)

rates also affects the kLa value (Table 2).

Correlation of kLa with P(3HB-co-3HV) productivity

and 3HV content (mol%)

Cane molasses is a by-product of the sugar industry, which

contains reducing sugars such as glucose, fructose, and

sucrose in abundance. In addition, it also contains the

various ions, minerals, and vitamins that may have detri-

mental effects on microbial growth and product synthesis.

These components are required to remove from the molasses

solution in order to increase the yield of desired product. This

leads to the development of various pre-treatment techniques

such as treatment with potassium ferrocyanide (PFC), EDTA,

sulfuric acid, and tricalcium phosphate. These have been used

for molasses pretreatment during production of citric acid,

ethanol, and gluconic acid [29]. In our laboratory experi-

mental study, we have also used PFC-treated molasses for the

production of P(3HB-co-3HV) with the supplementation of

propionic acid (data not shown). However, the maximum

copolymer accumulation is observed in the medium contain-

ing untreated molasses than the PFC-treated molasses solu-

tion. The possible reason may be that the trace metal ions are

essential for the copolymer metabolism, which could have

been removed during treatment with PFC. Similar observation

has been reported by Purushothaman et al. [27] during PHB

production from A. beijerinckii. It is also observed that the

higher concentration ([4% solution) of cane molasses has

detrimental effects on copolymer accumulation [46]. Further,

it is noted that the copolymer productivity may enhance by

controlling the agitation and aeration rates which indirectly

facilitate the assimilation of sugar inside the bacterial cells.

It is found that the copolymer productivity initially

fluctuates with the increase in kLa values from 0.027 to

0.207 s-1, achieves a maximum of 0.163 g l-1 h-1 at

0.170 s-1 kLa value and then decreases at higher values of

kLa (Fig. 3). The fluctuation in copolymer productivity

might be occurred due to the change in the physiological

state of bacteria by changing the microenvironment in

bioreactor system. The productivity of copolymer is also

associated with the incorporation of 3HB and 3HV

monomers in P(3HB-co-3HV) structure. At high kLa val-

ues, the accumulation of growth-associated 3HB mono-

mers units is observed whereas the incorporation of 3HV
Fig. 2 Contour plot of model-derived kLa values as a function of

agitation and aerations rates of bioreactor system

Table 2 Analysis of variance of fitted model and estimated regression coefficients for P(3HB-co-3HV) concentration and kLa values

Variable terms P(3HB-co-3HV) concentration kLa value

Coefficient MS F value p value Coefficient MS F value p value

Intercept/model 1.04326 1.73 84.34 \0.0001 0.24569 0.10 50.36 \0.0001

Agitation (X1) 0.02401 2.64 128.93 \0.0001a -0.00232 0.28 135.96 \0.0001b

Aeration (X2) 4.19268 0.20 9.85 0.0164a -0.11659 0.15 74.98 \0.0001b

X1
2 -0.00004 2.34 114.07 \0.0001a 0.000004 0.036 17.52 0.0041b

X2
2 -2.07586 1.13 55.19 0.0001a 0.035034 0.0002 0.10 0.7567

X1X2 -0.00023 0.29 14.24 0.0070a 0.00112 0.039 19.02 0.0033b

R2 (%) 98.37 97.30

Radj
2 (%) 97.20 95.36

a Significant model terms for P(3HB-co-3HV)
b Significant model terms for KLa value
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units is accelerated at low kLa values with the utilization of

propionate.

Comparison of modeling ability of RSM and ANN

for P(3HB-co-3HV) production

In order to study the effect of process variable’s agitation

and aeration rates on copolymer P(3HB-co-3HV) produc-

tion, experiments were conducted in full-factorial design

(Table 1). These experimental data were fitted by using

RSM and ANN approaches. Under RSM approach, the

quadratic polynomial equation, which represents the

empirical relationship between the response and process

variables, is given as follows:

Ycopol ¼ 1:04326þ 0:024008 X1 þ 4:19268X2

� 0:000042 X2
1 � 2:07586X2

2 � 0:000228 X1X2

ð11Þ

where, Ycopol is predicted P(3HB-co-3HV) concentration,

X1 and X2 represent the agitation and aeration rates,

respectively.

Further, the statistical testing of the model is performed

by using Fisher’s test (F test) for analysis of variance

(ANOVA) and the results are given in Table 2. The model

F value of 84.34 indicates that the above model is well

fitted to the experimental data. The determination of cor-

relation coefficient (R2) value of 98.37%, indicates that

only 1.67% of the variability in response is not explained

by the model. The adj. R2 value, which corrects the R2

value with respect to sample size and number of model

terms is 97.20% (close to R2 value), suggests good agree-

ment of prediction with experimental data.

The regression coefficients obtained from non-linear

regression analysis between response and process variables

are also listed in Table 2. A p value of less than 0.05

indicates that the model terms are significant. It is found

that the aeration and agitation had a strong positive linear

effect on copolymer production (p value \ 0.05). More-

over, a significant negative quadratic effect of agitation

speed (p value \ 0.05) and aeration rate (p value \ 0.05)

on copolymer production is reported. Finally, significant

negative interaction is noticed among the aeration and

aeration rates indicating that the P(3HB-co-3HV) produc-

tion increases initially with the increasing agitation and

aeration rates, reaches a maximum, and then decreases at

high values of these variables.

Under the ANN approach, a feed-forward neural net-

work trained by resilient backpropagation algorithm with

one hidden layer is constructed (Fig. 1). The inputs of the

network are agitation and aeration rates whereas the out-

puts are P(3HB-co-3HV) and kLa values (for two separate

model). The number of nodes in the hidden layer is varied

from one to six and correspondingly the RMSE (Eq. 5) and

SEP (Eq. 6) between experimental and predicted values at

varying neurons are calculated (Fig. 4). For the P(3HB-co-

3HV) model, it is observed that the RMSE and SEP values

decrease with the increase in neurons in hidden layer from

one to four and become constant from five to six neurons in

the hidden layer. Likewise, for kLa, RMSE and SEP values

decrease sharply with the increase in neurons from one to

three, further decrease slightly for four neurons, and

become constant for five and six neurons in the hidden

layer. Thus, four neurons are chosen in the hidden layer for

the training of experimental data. The primary goal of

training is to minimize the error function (MSE) by

searching a set of connection weight and bias values that

produce outputs equal or close to the target value.

Fig. 3 Effect of volumetric oxygen transfer coefficient (kLa) on 3HV

content (mol%) and P(3HB-co-3HV) productivity

Fig. 4 Effect of number of neurons in the hidden layer on the root

mean square error (filled square/open square) and standard error of

prediction (filled triangle/open triangle) during the training of ANN

models of P(3HB-co-3HV) (g l-1) and kLa (s-1)
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Further, the experimental data of bioreactor are used to

feed the constructed neural network and divided into

training (eight data sets) and testing (two data sets). After

successful training, the weight and bias values of each

layer of network are determined (Table 3) and are used to

correlate the inputs of network to the output responses of

network ((P(3HB-co-3HV) content and kLa values) as:

ANN ¼ purelinðact:LW 3; 2f g � tan sigðact:LW 2; 1f g
� purlin act:IW 1; 1f g � pþ act:b 1f gð Þ
þact:b 2f gÞ þ act:b 3f gÞ ð12Þ

where, act.IW{1,1}, act.LW{2,1}, and act.LW{3,2} rep-

resents the weights (Ni, i = 1–4, i.e., number of neurons)

of input, hidden, and output layers, respectively, with the

purelin and tan sig transfer functions. Similarly, act.b {1},

act.b {2}, and act.b {3} represent bias in input, hidden, and

output layers, respectively.

The RMSE, SEP, bias (Bf), accuracy (Af), and MPE

(D) for the RSM and ANN models are calculated by Eqs.

(5–9). For P(3HB-co-3HV) concentration, as shown in

Table 1, the RMSE (0.22) and SEP (4.17%) for the RSM

model are larger than those for the ANN model, 0.019

and 0.353%, indicating that the ANN has higher mod-

eling ability than the RSM for copolymer P(3HB-co-

3HV) production. Furthermore, the Bf and Af are close to

unity for both RSM and ANN models, indicating a good

concordance between the experimental and predicted

values. Better accuracy for predictions has been observed

by ANN model with 0.25% prediction error as compared

to 3.57% prediction error by RSM. For kLa, the RMSE

and SEP values are 0.005 and 1.823%, respectively, for

ANN model as compared to 0.039 and 15.03%, respec-

tively, for the RSM model. These values indicate a good

fit of the experimental data to ANN model in comparison

to RSM model. The Bf and Af values, also closed to unity

for the ANN model, indicate good harmony between the

experimental and predicted values. A very low value

(2.50%) of prediction error is also indicative of better

modeling ability of the ANN model than RSM model

with a predictive error of 33.24%. A three-dimensional

response surface plot is generated in MATLAB 7.8.1

(MathWorks Inc., MA, USA), which represents the

interaction between agitation and aeration rates for the

copolymer production by using quadratic polynomial

Eq. (11) (Fig. 5). It is found that the increase in both the

process variables at a certain level results in maximum

copolymer accumulation; whereas further increase in its

concentrations beyond the optimum value decreases the

copolymer accumulation.

The connection weights of networks obtained after

training can resemble the regression coefficients of

polynomial model (Table 3). These connection weights

with the corresponding bias terms are used to estimate

the relative importance of each input variable on the

output variables. The relative importance of each input

term (Ij) on the output response can be determined using

Eq. (13), which is based on the partitioning of connect-

ing weights:

Ij ¼

Pm¼Nh

m¼1 ðð Wih
jm

���
���=
PNi

k¼1 Wih
km

�� ��Þ � Who
mn

�� ��Þ
Pk¼Ni

k¼1

Pm¼Nh

m¼1 Wih
km

�� ��=
PNi

k¼1 Wih
km

�� ��� �
� Who

mn

�� ��	 


ð13Þ

where, Ij is the relative importance of the jth input variable

on the output variable, and Ni and Nh are the numbers of

input and hidden neurons, respectively. W is the connection

weight with the superscripts ‘i’, ‘h’ and ‘o’ referring to

input, hidden and output layers, respectively, and the

subscript ‘k’, ‘m’ and ‘n’ referring to input, hidden and

output neurons, respectively.

On the basis of the above calculations, it has been

observed that the agitation speed with relative importance

of 72.19% is comparatively more influential process vari-

able for copolymer accumulation than the aeration rate

with a relative importance of 27.80%. A similar trend is

observed for the relative influence of agitation speed

(64.44%) and aeration rate (35.55%) on volumetric oxygen

transfer coefficient in the bioreactor.

Table 3 Structure of trained neural network models for the prediction of P(3HB-co-3HV) and kLa estimations

Neuron NN architecture: P(3HB-co-3HV) NN architecture: KLa estimation

N1 N2 N3 N4 N1 N2 N3 N4

Input-hidden layer

Agitation (I1) 4.3072 -10.5640 4.1504 -0.6839 -1.1228 0.6204 4.4068 2.7741

Aeration (I2) 0.8584 -0.6898 -2.6174 -3.6973 -2.0492 1.4651 0.9393 -0.9119

Bias in hidden layer -2.3714 1.2322 5.6735 -2.8315 3.1418 0.2999 -0.0682 2.6555

Hidden-output layer

Weights 0.1674 0.2067 0.4346 -0.3887 -0.5244 -0.1343 -0.3378 0.6408

Bias in output layer 0.0297 0.3937
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Comparison of GA-based optimization using RSM

and ANN models

Once the satisfactory RSM- and ANN-based models with

good prediction accuracy were developed, then the opti-

mization of input space (variables) was performed by

genetic algorithm (a stochastic search engine). The differ-

ent parameters of GA-based optimization were set as:

chromosome length (lchr) 10; population size (Npop) 10;

crossover probability (Pcr) 0.9; and mutation probability

(Pmut) 0.01 as reported in the literature [10, 28, 40]. The

optimum conditions were identified after the evaluation of

GA for 200 iterations (Ng
max = 200) to achieve maximum

copolymer P(3HB-co-3HV) production by using Eq. (11).

The maximum and average fitness response of P(3HB-co-

3HV) is plotted in Fig. 6.

The hybrid RSM-GA approach predicts the maximum

P(3HB-co-3HV) concentration of 6.43 g l-1 with 19.80%

3HV content (mol%) at agitation and aeration rates of 279

rev min-1 and 1.15 vvm, respectively. The algebraic form

of Eq. (12), which represents the network of weight and

bias values, was used as fitness function in the hybrid

ANN-GA approach. After successful conversion of

responses in neural architecture, the maximum P(3HB-co-

3HV) concentration of 7.45 g l-1 with 21.50% 3HV con-

tent (mol%) was predicted at optimum concentration of

agitation and aeration rates of 287 rev min-1 and 0.85 vvm,

respectively (Table 4). It is observed that the hybrid ANN-

GA has performed better and predicts a higher response

than hydrid-GA approach. The application of stochastic

technique, GA is well suited for searching the global

optima in multi-dimensional search spaces in contrast to

statistical approaches, which are restricted to local optima

[40]. The ANN is flexible and able to model the non-linear

phenomena without mathematical description whereas

RSM is based on mathematically derived quadratic poly-

nomial equation with regression analysis and test of sig-

nificance [28]. ANN mimics the biological processing

system during the non-linear mapping of a set of inputs to

the outputs. Thus, with the superiority of modeling ability,

ANN is successfully integrated with GA paradigm to give

the global optimal solution for maximum production of

copolymer P(3HB-co-3HV) and incorporation of 3HV

units.

Validation of predictive responses

Cane molasses is a by-product derived from the sugar

industry and is generally sold at about 33–50% of the price

of pure sugars. In the present study, the process parameters,

agitation and aeration rates, are optimized for maximum

P(3HB-co-3HV) production using previously designed

molasses medium [46]. Upon validation in bioreactor, with

optimum agitation and aeration rates (RSM-GA solution

1), 5.70 g l-1 of P(3HB-co-3HV) with 20 mol% 3HV was

observed with the prediction error (%) of 11.28 and 6.38,

respectively. In contrast, a slightly higher yield of P(3HB-

co-3HV) of 7.20 g l-1 with 21 mol% of 3HV units was

observed with prediction error of 3.38 and 2.32, respec-

tively, at the optimum process variable level (ANN-GA 1):

agitation speed 287 rev min-1, and aeration rate 0.85 vvm.

The above findings reveal a comparatively higher predic-

tion ability of hybrid ANN-GA paradigm due to the better

modeling ability of ANN than RSM model (Table 5).

The carbon yield is calculated as the ratio of the C moles

in the product P(3HB-co-3HV) to the number of C moles in

the substrate(s), total reducing sugar and propionate. Here,

Fig. 5 Response surface plot showing the model-derived P(3HB-co-

3HV) production as a function of agitation and aerations rates of the

bioreactor system
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Fig. 6 Graphical representations of the maximum and average fitness

of P(3HB-co-3HV) production (g l-1) over a number of iterations of

GA operators
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the carbon yields of 0.58 and 0.48 were calculated on

optimized solution given by hybrid ANN-GA and RSM-

GA, respectively. These calculated values are comparable

to the theoretical carbon yield of 0.48 and 0.50 on pure

substrates glucose and sucrose [43] and suggest that the

optimized process parameters favor the cost-effective

production of P(3HB-co-3HV) from cane molasses.

The production of copolymer P(3HB-co-3HV) is initi-

ated after the onset of exponential growth and reaches a

maximum of 70.75 and 60.08% of dry cell weight at 40 h

Table 4 Optimal solutions predicted by hybrid RSM-GA and hybrid ANN-GA approaches along with their validated results in a 3-l bioreactor

Optimization

method

Process variables Predicted response Validation P(3HV-co-3HB)

carbon yieldb

Agitation

(rev min-1)

Aeration

(vvm)

P(3HV-co-3HB)

conc. (g l-1)

3HV

(mol %)

P(3HV-co-3HB)

conc. (g l-1)

PEa 3HV

(mol %)

PEa

RSM-GA 1 279 1.15 6.425 18.80 5.70 11.28 20 6.38 0.48

RSM-GA 2 277 1.15 6.324 19.20 5.75 9.08 20 4.17 0.48

ANN-GA 1 287 0.85 7.452 21.50 7.20 3.38 21 2.32 0.58

ANN-GA 2 333 0.99 6.921 20.50 6.80 1.75 21 2.44 0.55

a Prediction error (PE) = ðExperimental - Predicted)=Predicted

���
���� 100

b Carbon yield (YCPHBV) = carbon mole in P(3HB-co-3HV)/carbon mole in substrates (total sugar ? propionic acid)

Table 5 A brief comparative study on PHAs production using various pure/raw substrates along with the findings of present study

S.

no.

Microorganism Carbon/VFA

sources

Cultivation

vessel

Process parameters PHAs

conc.

(g l-1)

% PHA

(dcw-1)

Productivity

(g l-1 h-1)

References

Temp.

(�C)

pH DO

(vvm)

Agitation

(rpm)

1 Recombinant

Escherichia
coli

Glucose 5.6-l

bioreactor

30 – 1.5 125 PHB:

0.91

20.40 0.019 [1]

Glucose 5.6-l

bioreactor

30 – 1.5 500 PHB:

3.51

37.20 0.073

Glycerol 5.6-l

bioreactor

30 – 1.5 125 PHB:

1.43

30.10 0.030

Glycerol 5.6-l

bioreactor

30 – 1.5 500 PHB:

1.63

16.90 0.034

2 Alcaligenes
eutrophus
DSM 545

Cane molasses

0.3% (w/w)

500-ml

flask

30 7.0 – 300 PHB:

8.9

39.00 0.12 [4]

3 Alcaligenes
latus DSM

1122

Sucrose/Na-

propionate

5-l

bioreactor

35 7.0 40–50%

(air

sat.)

640 PHB:

3.4

PHV:

1.3

85.00 qp(B): 0.17

qp(V): 0.01

[8]

4 Bacillus
megaterium

Cane molasses

2% (w/w)

250-ml

flask

30 7.0 – 130 PHB:

2.53

46.00 0.053 [14]

5 Ralstonia
eutropha

Whey/Inverted

sugar/

Propionic

acid

5-l

bioreactor

30 7.0 – – PHB:

2.47

PHV:

1.46

37.00 0.07 [23]

6 Azotobacter
beijerinckii

Molasses/corn

steep liquor

500-ml

flask

30 7.0 – – PHB:

3.73

24.55 0.15 [27]

7 Rhodobacter
sphaeroides

Acetate/

(NH4)2SO4

5-l

bioreactor

33.5 7.0 1.0 150 PHB:

8.76

95.40 0.15 [32]

8 Azohydromonas
lata MTCC

2311

Cane

molasses/

Na-

propionate

3-l

bioreactor

30 6.8 0.85 287 PHB:

5.65

PHV:

1.55

67.92 0.16 This work
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of cultivation on ANN-GA and RSM-GA based solutions,

respectively (Fig. 7a). Thereafter, the copolymer concen-

trations are maintained at 7.20 (ANN-GA) and 6.20 (RSM-

GA) g l-1 until the end of fermentation (60 h). During the

copolymer accumulation, monomer compositions of the

synthesized copolymer are changed. At the start of

copolymer accumulation, the principal monomer unit is

3HB, which is shifted to 3HV monomers later during the

fermentation period from 24 to 42 h. During this period,

the mole fraction of 3HV units was increased from 9 to

21%. The total sugar concentration declines from 20 to

5 g l-1 during the initial 24-h cultivation with a sharp

decrease in NH4
? ion concentration also during validation

process (Fig. 7b). This leads to the microbial growth and

growth-associated 3HB accumulation inside the microbial

cells. The first installment of propionic acid is commenced

at 12 h of cultivation, but its assimilation is started after

20 h of cultivation. The consumption of propionic acid is

accelerated during 24–36 h of cultivation with simulta-

neous accumulation of 3HV units in copolymer P(3HB-co-

3HV). Studies reported by Chen et al. [8] showed the

production of 3.4 g l-1, and 1.3 g l-1 of 3HB and 3HV

units, respectively, corresponding to 85% PHA accumula-

tion in cell mass using sucrose supplemented with propi-

onic acid.

Also, Marangoni et al. [23] used dairy waste whey for

the production of copolymer P(3HB-co-3HV) with the

supplementation of inverted sugar and propionic acid. They

have observed 1.46 g l-1 of 3HV content in 3.93 g l-1 of

accumulated polymer, corresponding to 37% of the dry cell

weight. Beaulieu et al. [4] described the maximum accu-

mulation of 5.75 g l-1 of PHB at optimal level of molasses

of 0.3% by A. eutrophus DSM 545. Gouda and colleagues

[14] observed the maximum PHB concentration of 46.20%

per mg cell dry weight with 2% molasses, while best

growth was obtained with 3% molasses using Bacillus

megaterium.

Similarly, Purushothaman et al. [27] used the cane

molasses with corn steep liquor and reported the 3.7 g l-1

of PHB after 24 h of cultivation of A. beijerinckii.

During validation, the initial pH (7) was decreased

sharply during the exponential growth with feeding of

propionic acid and simultaneous production of copolymer

(Fig. 7c). With a slight decrease in pH during accumulation

phase, the pH become constant to 4.35 and 4.45 until the

end of the fermentation process solution given by ANN-

GA and RSM-GA approaches, respectively. Similarly, the

dissolved oxygen consumption is started rapidly after 12 h

of cultivation (during growth phase) and exhausted from

100 to 22% within the next 10 h. However, during

copolymer accumulation, oxygen limitation (\20% air sat.)

is encountered and conquered after the cessation of growth

and copolymer accumulation at 40 h of cultivation.

Almeida et al. [1] studied the effect of aeration on the PHB

production from glycerol and glucose by recombinant

E. coli. They have reported the maximum PHB concen-

tration of 1.43 (30.1% of dcw) and 1.62 g l-1 (20.4% of

dcw) on glycerol and glucose, respectively, with moderate

agitation (125 rev min-1). In glycerol culture, a low-agitation

Fig. 7 a Validated responses of biomass, P(3HB-co-3HV), and 3HV

content derived on optimal solutions (RSM and ANN) over time.

b Utilization patterns of total sugar, NH4
? ions, and propionate

concentration over time during validation of RSM-GA solution (filled
square/filled triangle/asterisk) and ANN-GA solution (open square/

open triangle/triangle with plus). c Change in pH (asterisk/diamond)

and dissolved oxygen (%saturation) (open square/open triangle)

during validation of optimal solutions
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condition favors more PHB accumulation while a decrease

in PHB formation was observed in glucose culture. Simi-

larly, the maximum PHB concentration of 8.79 g l-1

(95.4% of dcw) has been reported on agitation and aeration

rates of 150 rpm and 1.0 vvm, respectively, with optimized

acetate medium [32].

Analysis of material properties of copolymer P(3HB-

co-3HV)

The thermal behavior of produced copolymer is analyzed

by simultaneous thermogravimetry–differential thermal

analysis (TG–DTA) curves illustrated in Fig. 8. The ther-

mal degradation of copolymer P(3HB-co-3HV) and stan-

dard PHB were observed between 250–294�C and

200–246�C, respectively. This lead to the weight losses of

about 91% for both biopolymer with endothermic DTA

peaks at 290 and 238�C for copolymer and standard PHB,

respectively. The DTA thermogram also revealed the

melting behavior (Tm) of polymer and noted that the Tm of

P(3HB-co-3HV) is significantly lower (150�C) than the Tm

of standard PHB (169�C). For copolymer P(3HB-co-3HV),

the difference between Tm and decomposition temperature

(200�C) is high enough to increase its processing window

under various applications.

GPC analysis of copolymer P(3HB-co-3HV) extracted from

A. lata cells revealed that weight average molecular weight

(Mw), number average molecular weight (Mn), and polydis-

persity index (D) defined as Mw/Mn were 2.0616 9 104

g mol-1, 1.2117 9 104 g mol-1, and 1.701, respectively.

These values are comparable with the standard P(3HB-co-

3HV) (12 mol%) as Mw 6.54 9 105, Mn 3.55 9 105, and D as

1.84 [19]. Sudesh et al. [36] reported that the Mw of P(3HB)

produced from wild bacteria ranges from 1 9 104 to

3 9 106 g mol-1 with a polydispersity of around two.

Conclusions

The feeding of propionic acid in cane molasses solution has

been successfully applied for the production of copolymer

P(3HB-co-3HV) by A. lata MTCC 2311. Further, signifi-

cant improvement has been observed under the strategic

optimization of process variables such as agitation and

aeration rates. The following conclusions have been made:

1. The performance of P(3HB-co-3HV) production process

has been modeled by a three-layered neural network with

four neurons in hidden layer in a better way (RMSE:

0.019; SEP:0.353%). Again, the genetic algorithm has

been employed successfully to search the global domain

of agitation and aeration range to predict the maximum

copolymer concentration (7.45 g l-1) with 21.50% 3HV

content at process variables: agitation speed, 287 rev

min-1; and aeration rate, 0.85 vvm. Upon validation,

7.20 g l-1 of P(3HB-co-3HV) and 21 mol% of 3HV

content were observed with prediction error (%) of 3.38

and 2.32, respectively.

2. The observed kLa value has been found to be directly

proportional to the agitation and aeration rates. It is

also observed that the copolymer productivity is

initially fluctuated with an increase in kLa value,

achieves maximum of 0.163 g l-1 h-1 at 0.17 s-1 of

kLa value, and then decreases at its higher values. In

contrast, a sharp decrease in 3HV content has been

reported on an increased kLa value.

3. Agitation speed was observed to be a more influential

process parameter with a relative importance of

72.19% for copolymer production than aeration rate

with a relative importance of 27.80%.

4. During the fermentative production of P(3HB-co-

3HV), the monomeric composition of accumulated

polymer changed with time. During the initial copoly-

mer synthesis, the 3HB units accumulate, which is

shifted to 3HV units (9–21%) later during the culti-

vation period of 24–42 h.

5. The increase in copolymer content enhanced the

thermal and material properties; such as Tm, degrada-

tion temperature profile, and Mw of produced

P(3HB-co-3HV) significantly in order to increase its

processing windows.

Hence, the production of cost-effective copolymer

P(3HB-co-3HV) with desired 3HV content (mol%) and

improved material properties has been observed from cane

molasses upon optimization of process parameters, agita-

tion and aeration rates of a bioreactor.
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